Through the wormhole

Through the wormhole

Science fiction is filled with tales of traveling through wormholes. But the reality of such travel is more complicated, and not just because we've yet to spot one.

The first problem is size. Primordial wormholes are predicted to exist on microscopic levels, about 10–33 centimeters. However, as the universe expands, it is possible that some may have been stretched to larger sizes.

Another problem comes from stability. The predicted Einstein-Rosen wormholes would be useless for travel because they collapse quickly.

"You would need some very exotic type of matter in order to stabilize a wormhole," said Hsu, "and it's not clear whether such matter exists in the universe."

But more recent research found that a wormhole containing "exotic" matter could stay open and unchanging for longer periods of time.

Exotic matter, which should not be confused with dark matter or antimatter, contains negative energy density and a large negative pressure. Such matter has only been seen in the behavior of certain vacuum states as part of quantum field theory.

If a wormhole contained sufficient exotic matter, whether naturally occurring or artificially added, it could theoretically be used as a method of sending information or travelers through space. Unfortunately, human journeys through the space tunnels may be challenging.



"The jury is not in, so we just don't know," physicist Kip Thorne, one of the world's leading authorities on relativity, black holes and wormholes, told Space.com. "But there are very strong indications that wormholes that a human could travel through are forbidden by the laws of physics. That's sad, that's unfortunate, but that's the direction in which things are pointing."

Wormholes may not only connect two separate regions within the universe, they could also connect two different universes. Similarly, some scientists have conjectured that if one mouth of a wormhole is moved in a specific manner, it could allow for time travel.

"You can go into the future or into the past using traversable wormholes," astrophysicist Eric Davis told LiveScience. But it won't be easy: "It would take a Herculean effort to turn a wormhole into a time machine. It's going to be tough enough to pull off a wormhole."

However, British cosmologist Stephen Hawking has argued that such use is not possible. [Weird Science: Wormholes Make the Best Time Machines]

"A wormhole is not really a means of going back in time, it's a short cut, so that something that was far away is much closer," NASA's Eric Christian wrote.

Although adding exotic matter to a wormhole might stabilize it to the point that human passengers could travel safely through it, there is still the possibility that the addition of "regular" matter would be sufficient to destabilize the portal.

Today's technology is insufficient to enlarge or stabilize wormholes, even if they could be found. However, scientists continue to explore the concept as a method of space travel with the hope that technology will eventually be able to utilize them.

"You would need some of super-super-advanced technology," Hsu said. "Humans won't be doing this any time in the near future."

Comments

Post a Comment

Popular posts from this blog

HD140283

V616-MONOCEROTIS —NEAREST BLACKHOLE TO THE EARTH

PULSARS